The Extremal Solution for the Fractional Laplacian
نویسنده
چکیده
We study the extremal solution for the problem (−∆)u = λf(u) in Ω, u ≡ 0 in R \ Ω, where λ > 0 is a parameter and s ∈ (0, 1). We extend some well known results for the extremal solution when the operator is the Laplacian to this nonlocal case. For general convex nonlinearities we prove that the extremal solution is bounded in dimensions n < 4s. We also show that, for exponential and power-like nonlinearities, the extremal solution is bounded whenever n < 10s. In the limit s ↑ 1, n < 10 is optimal. In addition, we show that the extremal solution is H(R) in any dimension whenever the domain is convex. To obtain some of these results we need L estimates for solutions to the linear Dirichlet problem for the fractional Laplacian with L data. We prove optimal L and C estimates, depending on the value of p. These estimates follow from classical embedding results for the Riesz potential in R. Finally, to prove the H regularity of the extremal solution we need an L∞ estimate near the boundary of convex domains, which we obtain via the moving planes method. For it, we use a maximum principle in small domains for integrodifferential operators with decreasing kernels.
منابع مشابه
Extremal Positive Solutions For The Distributed Order Fractional Hybrid Differential Equations
In this article, we prove the existence of extremal positive solution for the distributed order fractional hybrid differential equation$$int_{0}^{1}b(q)D^{q}[frac{x(t)}{f(t,x(t))}]dq=g(t,x(t)),$$using a fixed point theorem in the Banach algebras. This proof is given in two cases of the continuous and discontinuous function $g$, under the generalized Lipschitz and Caratheodory conditions.
متن کاملRandom fractional functional differential equations
In this paper, we prove the existence and uniqueness results to the random fractional functional differential equations under assumptions more general than the Lipschitz type condition. Moreover, the distance between exact solution and appropriate solution, and the existence extremal solution of the problem is also considered.
متن کاملThe Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
متن کاملExistence and uniqueness of solutions for p-laplacian fractional order boundary value problems
In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.
متن کاملExistence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کامل